Return to search

FEMTOSECOND DYNAMICS AND NONLINEAR EFFECTS OF ELECTRON-HOLE PLASMA IN SEMICONDUCTOR DOPED GLASSES.

The following is a comprehensive study of transient and steady-state nonlinear optical properties of semiconductor microcrystals embedded in a glass matrix (semiconductor doped glass). Transient thermal effects which give rise to longitudinal excitation discontinuities (i.e., kinks) that arise from partial sample switching in increasing absorption optical bistability are observed in a doped glass. The transient thermal effects occur on time scales of a few hundred milliseconds. Femtosecond and nanosecond laser pulses are employed to measure time-resolved and steady-state transmission and differential transmission spectra. The measured spectra reveal several beautiful effects which are attributed to the many-particle effects of electron-hole plasma. The spectra reveal: bandgap renormalization, broadening of the tail states and screening of the continuum states, state filling (spectral hole burning), thermalization of nonthermal carrier population distributions, band filling due to carrier relaxation of the thermal and nonthermal distributions, direct electron-hole recombination and long lived (>>100 ps) tail states which are attributed to electron trapping. Absorption edge dynamics discussed in this dissertation span 15 orders of magnitude.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/184091
Date January 1987
CreatorsOLBRIGHT, GREGORY RICHARD.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0178 seconds