Return to search

Solubility of aromatic compounds in mixed solvents.

The solubilities of benzene, naphthalene and anthracene were measured in five binary solvent systems. These systems consised of water and one of the following water miscible organic solvents: acetone, acetonitrile, methanol, ethanol, and isopropanol. The measurements were made at intervals of 0.1 volume fractions of the organic cosolvent. Solubility data were also collected for the above solutes in mixed cosolvents. solvent systems containing three In addition, the solubilities of and six five other aromatic solutes were measured in the binary solvent systems of methanol/water and acetone/water. The data was used to test the log-linear solubility model of Yalkowsky (1981). The model predicts a linear relationship between the solubility of a solute in a binary solvent system (S(m)) and the volume fraction of cosolvent present (f(c)) log S(m) = σf(c) + log S(w) Where S(w) is the solubility of the solute in water and σ is the proportionality constant and slope of the curve. The model is easily extended to multiple mixed solvents by combining the σ values from the binary solvent systems. log (S(m)/S(w)) = Σ₁ (σ₁£₁) A method was developed to estimate σ in a given binary solvent system from the octanol-water partition coefficient of the solute. Combining this method with the generalized solubility equation of Yalkowsky to estimate S(w), allows a priori estimates of solubility in mixed solvents. Maximum deviations in the binary solvent systems studied were related to maxima in excess density. In the alcoholic binary solvent systems the minima were related to minima in the heats of mixing of the two cosolvents. The herbicide atrazine deviated dramatically from the model. The system was examined for possible changes in the crystal structure of atrazine. It was found that some crystal modification occured in the presence of mixed solvents. The rate of the change appears to be dependant on the concentration of the cosolvent. A change or modification in the crystal violates one of the basic assumptions of the log-linear model. The assumption is that the crystal contributes equally to the solubility behavior irrespective of the solvent system. It was determined that atrazine undergoes a polymorphic transition in the systems studied. It is postulated that this polymorphism is responsible for the anomolous solubility behavior observed for atrazine.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/184324
Date January 1988
CreatorsMorris, Kenneth Robert.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0023 seconds