Return to search

Multiple beam correlation using single-mode fiber optics with application to interferometric imaging.

A study of the application of single-mode fiber optics to the multiple-beam interferometric recombination problem is presented. In the laboratory, the fibers have been used in wide bandwidth, two-arm, Mach-Zehnder test interferometers as well as a 5-telescope imaging interferometer connected to an all-fiber beam combiner. Based upon these experiments and some theoretical studies it is shown that fiber optics and fiber optic components such as directional couplers provide an excellent alternative to conventional optics such as mirrors, beamsplitters, and relay lenses. The equations describing the measurement of the complex degree of coherence in an interferometer with a single-mode fiber in each arm are derived. The equations reveal an important feature of the fibers: they filter phase fluctuations due to aberrations and turbulence at the input and convert them to intensity fluctuations at the output. This leads to a simplification of the calibration of measured visibilities. The coupling efficiency of light which has passed through a turbulent atmosphere is also studied as a function of fiber parameters and turbulence conditions for both image motion stabilized and non-stabilized cases. For the former case, coupling efficiency remains greater than 50% as long as telescope diameter is no larger than the turbulence coherence length. Beam combination architectures using arrays of directional couplers are fully discussed. Arrays accommodating up to 20 input beams are presented. The arrays require only N detector pixels for N input beams. A scheme of temporal multiplexing of the phase of each beam is used to identify individual fringe pairs. One possible scheme allows wide bandwidths even for large numbers of beams. A 5-telescope interferometer has been constructed and connected to an all-fiber beam combiner. Two extended objects were observed and reconstructed using standard radio astronomy VLBI software. The interferometer and beam combiner had good thermal and polarization stability and high throughput. Reconstructed images had dynamic ranges of about 50.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/184827
Date January 1989
CreatorsShaklan, Stuart Bruce.
ContributorsBurke, James J., Shack, Roland V., Hege, E. Keith
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0021 seconds