Return to search

Interactive graph layout: The exploration of large graphs.

Directed and undirected graphs provide a natural notation for describing many fundamental structures of computer science. Unfortunately graphs are hard to draw in an easy to read fashion. Traditional graph layout algorithms have focused on creating good layouts for the entire graph. This approach works well with smaller graphs, but often cannot produce readable layouts for large graphs. This dissertation presents a novel methodology for viewing large graphs. The basic concept is to allow the user to interactively navigate through large graphs, learning about them in appropriately small and concise pieces. The motivation of this approach is that large graphs contain too much information to be conveyed by a single canonical layout. For a user to be able to understand the data encoded in the graph she must be able to carve up the graph into manageable pieces and then create custom layouts that match her current interests. An architecture is presented that supports graph exploration. It contains three new concepts for supporting interactive graph layout: interactive decomposition of large graphs, end-user specified layout algorithms, and parameterized layout algorithms. The mechanism for creating custom layout algorithms provides the non-programming end-user with the power to create custom layouts that are well suited for the graph at hand. New layout algorithms are created by combining existing algorithms in a hierarchical structure. This method allows the user to create layouts that accurately reflect the current data set and her current interests. In order to explore a large graph, the user must be able to break the graph into small, more manageable pieces. A methodology is presented that allows the user to apply graph traversal algorithms to large graphs to carve out reasonably sized pieces. Graph traversal algorithms can be combined using a visual programming language. This provides the user with the control to select subgraphs that are of particular interest to her. The ability to Parameterize layout algorithms provides the user with control over the layout process. The user can customize the generated layout by changing parameters to the layout algorithm. Layout algorithm parameterization is placed into an interactive framework that allows the user to iteratively fine tune the generated layout. As a proof of concept, examples are drawn from a working prototype that incorporates this methodology.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/185833
Date January 1992
CreatorsHenry, Tyson Rombauer.
ContributorsHudson, Scott, Schlichting, Richard, Peterson, Larry L., Snodgrass, Richard T.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0019 seconds