Return to search

Novel Biomedical Imaging Systems

The overall purpose of the dissertation is to design and develop novel optical imaging systems that require minimal or no mechanical scanning to reduce the acquisition time for extracting image data from biological tissue samples. Two imaging modalities have been focused upon: a parallel optical coherence tomography (POCT) system and a volume holographic imaging system (VHIS). Optical coherence tomography (OCT) is a coherent imaging technique, which shows great promise in biomedical applications. A POCT system is a novel technology that replaces mechanically transverse scanning in the lateral direction with electronic scanning. This will reduce the time required to acquire image data. In this system an array with multiple reduced diameter (15μm) single mode fibers (SMFs) is required to obtain an image in the transverse direction. Each fiber in the array is configured in an interferometer and is used to image one pixel in the transverse direction. A VHIS is based on volume holographic gratings acting as Bragg filters in conjunction with conventional optical imaging components to form a spatial-spectral imaging system. The high angular selectivity of the VHIS can be used to obtain two-dimensional image information from objects without the need for mechanical scanning. In addition, the high wavelength selectivity of the VHIS can provide spectral information of a specific area of the object that is being observed. Multiple sections of the object are projected using multiplexed holographic gratings in the same volume of the Phenanthrenquinone- (PQ-) doped Poly (methyl methacrylate) (PMMA) recording material.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/193907
Date January 2008
CreatorsLuo, Yuan
ContributorsKostuk, Raymond K., Kostuk, Raymond K., Barton, Jennifer K., Gemitro, Arthur
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0032 seconds