Return to search

Fundus Spectroscopy and Studies in Retinal Oximetry Using Intravitreal Illumination

This dissertation documents the development of a new illumination technique for use in the studies of retinal oximetry and fundus spectroscopy. Intravitreal illumination is a technique where the back of the eye is illuminated trans-sclerally using a scanning monochromator coupled into a fiber optic illuminator. Retinal oximetry is the processof measuring the oxygen saturation of blood contained in retinal vessels by quantitative measurement of the characteristic color shift seen as blood oxygen saturation changes from oxygenated blood (reddish) to deoxygenated blood (bluish). Retinal oximetry was first attempted in 1963 but due to a variety of problems with accuracy and difficulty of measurement, has not matured to the point of clinical acceptabilityor commercial viability.Accurate retinal oximetry relies in part on an adequate understanding of the spectral reflectance characteristics of the fundus. The use of intravitreal illumination allows new investigations into the spectral reflectance properties of the fundus. The results of much research in fundus reflectance and retinal oximetry is detailed in thisdocument, providing new insight into both of these related fields of study.Intravitreal illumination has been used to study retinal vessel oximetry and fundus reflectometry resulting in several important findings that are presented in this document. Studies on enucleated swine eyes have provided new insight into the bidirectional reflectance distribution function of the fundus. Research on live swine hasshown accurate measurement of retinal vessel oxygen saturation and provided the first in vivo spectral transmittance measurement of the sensory retina. A secondary discovery during this research suggests that vitrectomy alters the retinal vasculature,a finding that should spawn new research in its own right.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/194538
Date January 2006
CreatorsSalyer, David Alan
ContributorsChipman, Russel A., Chipman, Russel A., Park, Robert I., Denninghoff, Kurt R.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0023 seconds