Return to search

Sources and Dynamics of Carbon Dioxide Exchange and Evapotranspiration in Semiarid Environments

Precipitation, more than any other environmental factor, controls patterns of ecosystem production and biogeochemical cycling in arid and semiarid environments. Growing-season rains in these regions are highly unpredictable as they come in intermittent pulses varying in size, frequency and spatial extent, thereby producing unique hydrological patterns that constrain the location and residence time of soil water available for biological activity. In order to understand how arid and semiarid ecosystems respond to inputs of precipitation within the context of ecosystem science and global change studies, knowledge is needed on how plants and other organisms respond as an integrated system to such environmental control. The focus of my research was to understand how the distribution of precipitation events influences the dynamics of carbon cycling in semiarid ecosystems. At a semiarid riparian woodland, measurements of CO2 exchange and evapotranspiration revealed that following precipitation events occurring soon after prolonged dry periods the efficiency of rain-use (amount of carbon gain per unit of precipitation over a specific period time) was low. Precipitation did not readily stimulate primary productivity, water was mainly lost as soil evaporation and large respiratory CO2 effluxes were observed. This commonly observed features in seasonally dry ecosystems might have profound consequences for the seasonal and annual carbon balance. In this woodland, 47% of the precipitation within a single growing season (May-October) was returned to atmosphere as soil evaporation and the CO2 efflux observed just during the first rainy month (July) was equivalent to almost 50% of the net carbon gain observed over the six-month growing season. Results from experimental irrigations in understory plots of riparian mesquite woodland revealed that the magnitude and duration of the large CO2 fluxes occurring soon after rainfall was higher in plots located under tree canopies where, relative to intercanopy plots, the amount of plant litter was higher, soil evaporation and plant photosynthetic rates were lower. Efficiency of rain-use in semiarid ecosystems during the growing season apparently was determined by the degree of coupling between gross photosynthesis and ecosystem respiration, by the fraction of precipitation lost as soil evaporation and by the water-use efficiency of the component vegetation.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/195249
Date January 2006
CreatorsYepez-Gonzalez, Enrico Arturo
ContributorsWilliams, David G., McClaran, Mitchel P., Williams, David G., McClaran, Mitchel P., Huxman, Travis E., Castellanos, Alejandro E., Archer, Steven R.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.01 seconds