Return to search

Understanding Transgene Flow from Bt Cotton into Non-Bt Cotton Fields and its Consequences for Pest Resistance Evolution

Refuges of non-Bacillus thuringiensis (Bt) cotton are used to delay Bt resistance in several key insect pests. In 2004, I discovered that Bt cotton plants sometimes enter refuges via the seed bag, and hypothesized that this type of gene flow could have important effects on resistance evolution in insect pests. In the research described herein, I investigated the sources of Bt plants in the non-Bt cotton seed supply and assessed the potential implications of this gene flow on pest resistance evolution. I report results from an empirical study of gene flow in 15 non-Bt cotton seed production fields, as well as results from simulation modeling studies of gene flow from one-toxin and two-toxin Bt cotton. The current policy on gene flow from genetically engineered crops in the United States is also reviewed, including the implications of my research findings for policymakers. Key findings of this study included the prominent role of seed-mediated gene flow in the seed-production setting, and the utility of a geographic information system (GIS) ring analysis approach for describing pollen-mediated gene flow in cotton fields. Modeling results indicated that high rates of gene flow of Bt cotton into refuges could have large effects on pest resistance evolution under certain sets of assumptions, particularly in parts of the world where farm-saved seed is planted year after year in cotton fields. It appears that some of these effects could be mitigated by using non-cotton refuges or by using plants that contain linked transgenes that confer multiple toxins. There are no clear regulations in the United States regarding gene flow of Bt cotton into refuge seed or into seed production fields of non-Bt cotton, as Bt cotton has been deregulated following extensive safety testing. Nevertheless, results from this research suggest that limiting gene flow into refuge seed could be important for sustaining the efficacy of Bt cotton against targeted insect pests in regions where refuges are used.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/196057
Date January 2010
CreatorsHeuberger, Shannon
ContributorsCarriere, Yves, Carriere, Yves, Tabashnik, Bruce E., DeGrandi-Hoffman, Gloria, Palumbo, John
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0021 seconds