Return to search

Impact of Climate Change on Hydroclimatic Variables

The conventional approach to the frequency analysis of extreme rainfall is complicated by non-stationarity resulting from climate change. In this study significant trends in extreme rainfall are detected using statistical trend tests (Mann-Kendall test and t-test) for all over the Korean Peninsula. The violation of the stationarity for 1 hour annual maximum series is detected for large part of the area especially for southwestern and northeastern regions. For stations showing non-stationarity, the non-stationary generalized extreme value (GEV) distribution model with a location parameter in the form of linear function of time makes significant improvement in modeling rainfall extremes when compared to the stationary GEV model. The Bartlett-Lewis rainfall model is used to generate annual maximum series for the purpose of generating the Intensity-Duration-Frequency (IDF) curve. Using 100 sets of 50 year synthetic annual maxima, it is found that the observed annual rainfall maximum series are reasonably represented by the model. The observed data is perturbed by change factors to incorporate the climate change scenario from the WRF (Weather Research and Forecasting) regional climate model into IDF estimates. The IDF curves for the future period 2040-2079 show highest estimates for all return periods and rainfall durations. The future IDF estimates show significant difference from the IDF estimates of the historical period (1968-2000). Overall, IDF curves show an increasing tendency over time. A historical and future climate simulation is evaluated over the Colorado River Basin using a 111-year simulation (1969-2079) of the WRF climate change scenario. We find the future projections show statistically significant increases in temperature with larger increases in the northern part of the basin. There are statistically insignificant increases in precipitation, while snowfall shows a statistically significant decrease throughout the period in all but the highest elevations and latitudes. The strongest decrease in snowfall is seen at high elevations in the southern part of the basin and low elevations in the northern part of the basin.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/265344
Date January 2012
CreatorsWi, Sungwook
ContributorsValdes, Juan B., Duan, Jennifer G., Dominguez, Francina, Valdes, Juan B.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0016 seconds