Return to search

Human Action Recognition on Videos: Different Approaches

The goal of human action recognition on videos is to determine in an automatic way what is happening in a video. This work focuses on providing an answer to this question: given consecutive frames from a video where a person or persons are doing an action, is an automatic system able to recognize the action that is going on for each person? Seven approaches have been provided, most of them based on an alignment process in order to find a measure of distance or similarity for obtaining the classification. Some are based on fluents that are converted to qualitative sequences of Allen relations to make it possible to measure the distance between the pair of sequences by aligning them. The fluents are generated in various ways: representation based on feature extraction of human pose propositions in just an image or a small sequence of images, changes of time series mainly on the angle of slope, changes of the time series focus on the slope direction, and propositions based on symbolic sequences generated by SAX. Another approach based on alignment corresponds to Dynamic Time Warping on subsets of highly dependent parts of the body. An additional approach explored is based on SAX symbolic sequences and respective pair wise alignment. The last approach is based on discretization of the multivariate time series, but instead of alignment, a spectrum kernel and SVM are used as is employed to classify protein sequences in biology. Finally, a sliding window method is used to recognize the actions along the video. These approaches were tested on three datasets derived from RGB-D cameras (e.g., Microsoft Kinect) as well as ordinary video, and a selection of the approaches was compared to the results of other researchers.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/265361
Date January 2012
CreatorsMejia, Maria Helena
ContributorsCohen, Paul, Downey, Peter, Barnard, Jacobus, Morrison, Clayton, Cohen, Paul
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0023 seconds