Slope stability analyses are commonly performed using computer programs hich perform safety factor calculations using limit equilibrium solutions and search for the critical, or most probable failure surface. These searches are always performed using "direct search" techniques, which are the simplest but least efficient optimization methods. In the future, more advanced optimization algorithms will be incorporated into existing slope stability programs, which will greatly increase the speed with which the search converges to the critical slip surface. The relative efficiency and reliability of these new search strategies must be established by comparative testing on a variety of slope problems. This paper presents a set of problems that will serve as a basis for future comparative testing of different optimization procedures. These problems span the range of slope problems encountered by geotechnical engineers. Baseline measures of efficiency are obtained using an existing slope stability program with grid and pattern search capabilities.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/276433 |
Date | January 1987 |
Creators | Gillett, Susan Gille, 1957- |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Thesis-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0018 seconds