Return to search

PREDICTING EDGE DETECTOR PERFORMANCE

This paper proposes a metric to predict edge detection performance when applied to an image with noise. First, models of edges and edge detection linear operators are characterized by their spatial and Fourier domain properties. Second, additive uncorrelated noise on the operator is examined and a metric is developed using the image formation system modulation transfer function (MTF), expected noise power spectral density, and edge detector characterization as inputs. Thirdly, the problem of partially correlated noise is examined. A separate performance metric for simple thresholded operator outputs is proposed. Finally, several discrete edge detectors in noise are evaluated numerically. Both the metric based on signal to noise detector output, and based on thresholding probabilities were useful in predicting previously published performance results. This was true even for many nonlinear detectors based on the linear detectors evaluated here. The specification of a localization criteria was critical for comparisons between detectors.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/276456
Date January 1987
CreatorsEngbrecht, Michael Robert, 1955-
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Thesis-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0923 seconds