Return to search

A transient model for decomposition and ablation of concrete during a molten core/concrete interaction

A simple approximation for predicting the concrete erosion rate and depth is derived based on heat balance integral method for conduction with the time dependent boundary conditions. The problem is considered a four-region model including separate, moving heat sinks at the boundaries due to endothermic decomposition reactions. Polynomial temperature profiles are assumed and the results are compared to previous experimental data and other analytical solutions. Since the technique provides an approximate temperature distribution on the average, it does not give the real temperature evaluation but provides a simple prediction of the erosion rates in terms of the parameters that are important during the physical phenomena. Because of its simplicity and reliability, the model might be useful of the larger molten core/concrete interaction models.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/277892
Date January 1991
CreatorsKilic, Arif Nesimi, 1963-
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Thesis-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0029 seconds