Return to search

A regression model for mineral solubility as a function of ionic strength and temperature

An algorithm is developed to predict the solubility of gypsum and anhydrite as a function of ionic strength and temperature. Critically evaluated experimental data were used for fitting of an eight parameter equation using multiple regression analysis. The model was also used to fit the simulated solubility data for anhydrite and gypsum, generated by program PHRQPITZ. The correlation between the observed and fitted values was very high. The errors between experimental model and PHRQPITZ simulation were computed with the variation of temperature and ionic strength. A significant improvement in the errors was noticed by replacing the values of equilibrium constants in PHRQPITZ. Modifications have been made in the FORTRAN code of PHRQPITZ to convert the program for VAX and PC computers. Additional modifications were made in PHRQPITZ to convert the index numbering of elements/species compatible to another geochemical model PHREEQE. (Abstract shortened with permission of author.)

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/278069
Date January 1991
CreatorsShaikh, Muhammad Javed, 1955-
ContributorsBassett, Randy
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Thesis-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0018 seconds