Neutron irradiation effects on the breakdown voltage of power MOSFETs

The effect of neutron irradiation on power metal-oxide-semiconductor field effect transistors (power MOSFETs) breakdown voltage has been investigated. Power MOSFETs of both n- and p-channel with manufacturer's rated breakdown voltage between 100 to 500V were radiated up to accumulated neutron fluence of 5x10¹⁴ neutron/cm² Considerable increase in the breakdown voltages were observed in n-type MOSFETs after 10¹³ neutron/cm² and to p-type MOSFETs after 10¹² neutron/cm² The increase in breakdown voltages is due to the decrease in the mean free path caused by the neutron-irradiation-induced defects. The effect of positive trapped charge oxide and the termination structure to the breakdown voltage were considered. S-PISCES 2B device simulation was used to investigate the change in the b coefficient of Chynoweth's law that relates to the mean free path. Two empirical models are presented: one predicts the power MOSFET breakdown voltage after a certain amount of neutron fluence and the other considers the change in the b coefficient after some amount of neutron radiation to predict the change of breakdown voltage in a device simulation.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/278361
Date January 1993
CreatorsHasan, Samil Mukhlisin Yauma, 1967-
ContributorsSchrimpf, Ronald D.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Thesis-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0014 seconds