Return to search

SIRT3: Molecular Signaling in Insulin Resistance

A Thesis submitted to The University of Arizona College of Medicine - Phoenix in partial fulfillment of the requirements for the Degree of Doctor of Medicine. / Post-translational modification of intracellular proteins through acetylation is recognized as an important regulatory mechanism of cellular energy homeostasis. Specific proteins called sirtuins deacetylate other mitochondrial proteins involved in glucose and lipid metabolism, activating them in metabolic processes. SIRT3 is a sirtuin of particular interest as it is found exclusively in mitochondria and has been shown to affect a variety of cellular metabolic processes. The activity of this enzyme is related to cellular insulin sensitivity. This study attempted to identify the relationship between insulin sensitivity and change in amount of SIRT3 following a bout of exercise in non-diabetic individuals. We find a moderate inverse correlation between insulin sensitivity and increase in SIRT3 abundance following exercise. This suggests that this protein may not be involved directly in cells’ ability to regulate energy homeostasis or that it may act through another mechanism not investigated in this study.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/315823
Date04 1900
CreatorsBarber, Collin
ContributorsThe University of Arizona College of Medicine - Phoenix, Mandarino, Lawrence PhD
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
TypeThesis
RightsCopyright © is held by the author. Digital access to this material is made possible by the College of Medicine - Phoenix, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0019 seconds