Return to search

Visual Acuity Estimation from Simulated Images

Simulated images can provide insight into the performance of optical systems, especially those with complicated features. Many modern solutions for presbyopia and cataracts feature sophisticated power geometries or diffractive elements. Some intraocular lenses (IOLs) arrive at multifocality through the use of a diffractive surface and multifocal contact lenses have a radially varying power profile. These type of elements induce simultaneous vision as well as affecting vision much differently than a monofocal ophthalmic appliance. With myriad multifocal ophthalmics available on the market it is difficult to compare or assess performance in ways that effect wearers of such appliances. Here we present software and algorithmic metrics that can be used to qualitatively and quantitatively compare ophthalmic element performance, with specific examples of bifocal intraocular lenses (IOLs) and multifocal contact lenses. We anticipate this study, methods, and results to serve as a starting point for more complex models of vision and visual acuity in a setting where modeling is advantageous. Generating simulated images of real- scene scenarios is useful for patients in assessing vision quality with a certain appliance. Visual acuity estimation can serve as an important tool for manufacturing and design of ophthalmic appliances.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/613300
Date January 2016
CreatorsDuncan, William J.
ContributorsSchwiegerling, Jim, Hua, Hong, Sasian, Jose, Schwiegerling, Jim
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0017 seconds