Return to search

The Effect of Gabion Construction on Infiltration in Ephemeral Streams

Low-tech rock structures called gabions are commonly used in dryland stream channels to reduce erosion, slow floodwaters, and increase infiltration. Gabions may also increase water availability for riparian vegetation, and increase the duration of surface flow in ephemeral stream channels. However, their effects on infiltration and recharge are not well-understood. This study tested low-cost methods for easily quantifying the total infiltration induced by gabion construction in an ephemeral stream channel, over the course of a single flow event. We used well-established methods to find point infiltration fluxes from subsurface temperature time-series. Unique to this study, we then upscaled these measurements to the gabion’s entire area of influence using time-lapse photo data, which recorded the onset of flow and the duration of ponding. For a flow lasting ~5 hours, we ran 225 model scenarios, estimating that a single gabion could have increased the total infiltrated volume in the channel reach between it and the next gabion by as much as 255% or as little as 0%, but the most likely scenario is a 10.8% increase. We found the photo data to be invaluable in obtaining these estimates, and in understanding the dynamics of a remote field site. Future work would benefit from more precise measurements of point infiltration fluxes and better records of ponded surface area over time. If these improvements are made and our estimates can be replicated reliably, they would suggest that gabions are a more powerful restoration and management tool than previously understood.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/622852
Date January 2016
CreatorsFandel, Chloe Alexandra, Fandel, Chloe Alexandra
ContributorsFerré, Ty P.A., Scott, Christopher, Ferré, Ty P.A., Scott, Christopher, Meixner, Thomas, Norman, Laura, Callegary, James
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Thesis
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0018 seconds