Return to search

Establishing the Role of Digital Repeat Photography in Understanding Phenology and Carbon Cycling in a Subarctic Peatland

In this thesis, I establish and explore the role of phenology in understanding the rapidly changing environment of a subarctic peatland. First, I demonstrate how digital repeat photography can be used to characterize and differentiate distinct plant communities using two years of images. Each habitat is composed of different plant functional groups, promoting the individualistic approach to characterization that near-earth remote sensing tools can provide. The camera-product Relative Greenness successfully characterized interannual variability in seasonal growth for each habitat type. Across habitats, there was a direct relationship between advancement of spring onset and active season growth though this overall pattern showed habitat-specific variance. The camera images were also useful in characterizing the flowering phenology of an ​eriophorum​-rich fen habitat, for which a metric named Intensity was created. These results suggest that employment of phenology cameras in highly heterogeneous subarctic environments is a robust method to characterize phenology on a habitat to species scale. Next, I explored the role that this phenology product has in modeling Net Ecosystem Exchange (NEE) also measured at the field site. I hypothesized that the explanatory power of the phenology index, which is conceptually tied to a measure of photosynthetic capacity, would be tightly linked to the timescale it was used for: At sub-daily timescales, environmental forces would dominate, though when averaged over days to weekly scales, the biology represented through the camera index would be more influential. I show that at multiple time scales the environmental factors outperform the camera index when modeling NEE. Together, these studies begin to explore the applicability of phenology camera systems in subarctic environments.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/624140
Date January 2017
CreatorsGarnello, Anthony John, Garnello, Anthony John
ContributorsSaleska, Scott R., Saleska, Scott R., Varner, Ruth K., Barron-Gafford, Greg, Moore, David
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Thesis
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0017 seconds