Return to search

Familial Amyotrophic Lateral Sclerosis with a focus on C9orf72 Hexanucleotide GGGGCC Repeat Expansion Associated ALS with Frontotemporal Dementia

Amyotrophic Lateral Sclerosis (ALS) is a rare and fatal neurodegenerative disorder resulting in the loss of motor neurons from the spinal cord and frontal cortex. The patterns of neurodegeneration, affected regions, age of onset, and time course of disease progression are all highly variable between and within variants of the disease. Familial ALS (fALS), inherited versions of ALS due to genetic changes, accounts for between 5-20% of all ALS cases, while the rest are sporadic, with either no causative mutation identified or no familial history of ALS. Recently, the discovery of C9orf72 hexanucleotide repeat expansions have been identified as one of the most common causes of familial ALS, with some patients presenting with dual phenotypes of ALS and frontotemporal dementia, leading to new hypotheses about the nature of neurodegenerative diseases. Despite the continued discovery of new ALS causative genes, little is known about the pathogenesis of the disease. While almost all variants include the presence of intracellular protein inclusions, the site of the protein plaques and involved proteins varies between genetic and phenotypic variants of this disease. Due to the lack of clear pathogenic mechanisms, several hypotheses have been developed to explain the process of neurodegeneration. Autophagy, the process of self-eating, leading to destruction of damaged or excess proteins and organelles, has been implicated as being altered in ALS. Multiple variants have demonstrated altered mitochondrial morphology and cellular energetic dynamics, which could explain previous observations that implicate the process of apoptosis in cellular death. Many of the involved proteins in ALS have functional roles for intracellular, nucleocytoplasmic, and axonal transport of various proteins or RNA. These three competing hypotheses are currently the most prominent hypotheses in the pathogenesis of ALS, and have largely been considered as separate and competing in past research. Is there a chance that the true pathogenesis leading to neuronal destruction via apoptosis involve all three hypotheses? Altered protein and RNA transport dynamics could lead to changes in cellular stress responses or overload autophagy pathways, leading to exacerbated cellular stress responses, leading to alterations in mitochondrial morphology and eventually cell death via apoptosis.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/625350
Date January 2017
CreatorsWorkinger, Paul M., Workinger, Paul M.
ContributorsElliott, David A., Wilson, Jean M., Elliott, David A., Wilson, Jean M., St. John, Paul A.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Thesis
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0061 seconds