Return to search

Planet Formation In the Early Stages of Star Formation

Recent studies suggest that many protoplanetary disks around pre-main sequence stars with inferred ages of 1-5 Myr (known as Class II protostars) may contain insufficient mass to form giant planets. This may be because by this stage much of the material in the disk has already grown into larger bodies, hiding the material from sight. If this is the case, then these older disks may not be an accurate representation of the initial mass budget in disks for forming planets.
To test this hypothesis, I have observed a sample of protostars in the Taurus star forming regions identified as Class I in multiple independent surveys, whose young (<1 Myr old) disks are more likely to represent the initial mass budget of protoplanetary disks. For my dissertation I have used detailed radiative transfer modeling of a multi-wavelength dataset to determine the geometry of the circumstellar material and measure the mass of the disks around these protostars. I discuss how the inferred disk mass distribution for this sample compares with results for the existing 1-5 Myr old disk samples, and what these results imply for giant planet formation.
Next, I discuss the cases of three separate, individual Class I protostars discovered through my ongoing survey of Class I protostars whose disks are all of particular interest, each for its own reasons. Each of these disks may provide clues that even at the young ages of Class I protostars, planet formation may already be well underway in their disks.
Finally, large disk mass surveys of large star forming regions like the Orion Nebula Cluster may be contaminated by free-free emission from disks that are being photoevaporated by nearby massive stars. I discuss my work with the VLA to constrain the free-free emission spectra for these sources so that current and future millimeter surveys can accurately measure disk masses in the ONC.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/625877
Date January 2017
CreatorsSheehan, Patrick Duffy, Sheehan, Patrick Duffy
ContributorsEisner, Josh, Eisner, Josh, Marrone, Dan, Rieke, George, Shirley, Yancy, Youdin, Andrew
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0018 seconds