Return to search

Long range robust multi-terawatt MWIR and LWIR atmospheric light bullets

There is a strong push worldwide to develop multi-Joule femtosecond duration laser pulses at wavelengths around 3.5-4 and 9-11 mu m within important atmospheric transmission windows. We have shown that pulses with a 4 mu m central wavelength are capable of delivering multi-TW powers at km range. This is in stark contrast to pulses at near-IR wavelengths which break up into hundreds of filaments with each carrying around 5 GW of power per filament over meter distances. We will show that nonlinear envelope propagators fail to capture the true physics. Instead a new optical carrier shock singularity emerges that can act to limit peak intensities below the ionization threshold leading to low loss long range propagation. At LWIR wavelengths many-body correlations of weakly-ionized electrons further suppress the Kerr focusing nonlinearity around 10 mu m and enable whole beam self-trapping without filaments.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/626498
Date08 May 2017
CreatorsMoloney, Jerome V., Schuh, Kolja, Panagiotopoulos, Paris, Kolesik, M., Koch, S. W.
ContributorsUniv Arizona, Coll Opt Sci, Univ Arizona, Dept Math, College of Optical Sciences, The Univ. of Arizona (United States), College of Optical Sciences, The Univ. of Arizona (United States), College of Optical Sciences, The Univ. of Arizona (United States), College of Optical Sciences, The Univ. of Arizona (United States), College of Optical Sciences, The Univ. of Arizona (United States)
PublisherSPIE-INT SOC OPTICAL ENGINEERING
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeArticle
Rights© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Relationhttp://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2262142

Page generated in 0.0017 seconds