Return to search

Cu-Silica Based Programmable Metallization Cell: Fabrication, Characterization and Applications

abstract: The Programmable Metallization Cell (PMC) is a novel solid-state resistive switching technology. It has a simple metal-insulator-metal “MIM” structure with one metal being electrochemically active (Cu) and the other one being inert (Pt or W), an insulating film (silica) acts as solid electrolyte for ion transport is sandwiched between these two electrodes. PMC’s resistance can be altered by an external electrical stimulus. The change of resistance is attributed to the formation or dissolution of Cu metal filament(s) within the silica layer which is associated with electrochemical redox reactions and ion transportation. In this dissertation, a comprehensive study of microfabrication method and its impacts on performance of PMC device is demonstrated, gamma-ray total ionizing dose (TID) impacts on device reliability is investigated, and the materials properties of doped/undoped silica switching layers are illuminated by impedance spectroscopy (IS). Due to the inherent CMOS compatibility, Cu-silica PMCs have great potential to be adopted in many emerging technologies, such as non-volatile storage cells and selector cells in ultra-dense 3D crosspoint memories, as well as electronic synapses in brain-inspired neuromorphic computing. Cu-silica PMC device performance for these applications is also assessed in this dissertation. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017

Identiferoai:union.ndltd.org:asu.edu/item:44992
Date January 2017
ContributorsChen, Wenhao (Author), Kozicki, Michael N (Advisor), Barnaby, Hugh J (Advisor), Yu, Shimeng (Committee member), Thornton, Trevor (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format204 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0024 seconds