Evaluation of the Performance of Multi-Component Cementitious Composites: Multi-Scale Experimental Characterization and Numerical Simulation

abstract: Being a remarkably versatile and inexpensive building material, concrete has found tremendous use in development of modern infrastructure and is the most widely used material in the world. Extensive research in the field of concrete has led to the development of a wide array of concretes with applications ranging from building of skyscrapers to paving of highways. These varied applications require special cementitious composites which can satisfy the demand for enhanced functionalities such as high strength, high durability and improved thermal characteristics among others.

The current study focuses on the fundamental understanding of such functional composites, from their microstructural design to macro-scale application. More specifically, this study investigates three different categories of functional cementitious composites. First, it discusses the differences between cementitious systems containing interground and blended limestone with and without alumina. The interground systems are found to outperform the blended systems due to differential grinding of limestone. A novel approach to deduce the particle size distribution of limestone and cement in the interground systems is proposed. Secondly, the study delves into the realm of ultra-high performance concrete, a novel material which possesses extremely high compressive-, tensile- and flexural-strength and service life as compared to regular concrete. The study presents a novel first principles-based paradigm to design economical ultra-high performance concretes using locally available materials. In the final part, the study addresses the thermal benefits of a novel type of concrete containing phase change materials. A software package was designed to perform numerical simulations to analyze temperature profiles and thermal stresses in concrete structures containing PCMs.

The design of these materials is accompanied by material characterization of cementitious binders. This has been accomplished using techniques that involve measurement of heat evolution (isothermal calorimetry), determination and quantification of reaction products (thermo-gravimetric analysis, x-ray diffraction, micro-indentation, scanning electron microscopy, energy-dispersive x-ray spectroscopy) and evaluation of pore-size distribution (mercury intrusion porosimetry). In addition, macro-scale testing has been carried out to determine compression, flexure and durability response. Numerical simulations have been carried out to understand hydration of cementitious composites, determine optimum particle packing and determine the thermal performance of these composites. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2018

Identiferoai:union.ndltd.org:asu.edu/item:51600
Date January 2018
ContributorsArora, Aashay (Author), Neithalath, Narayanan (Advisor), Rajan, Subramaniam (Committee member), Mobasher, Barzin (Committee member), Chawla, Nikhilesh (Committee member), Hoover, Christian G (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format393 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0022 seconds