Return to search

DFT Study of the Covalent Functionalization of Double Nitrogen Doped Graphene

Covalent functionalization significantly enhances the utility of carbon nanomaterials for many applications. In this study, we investigated the functionalization of double nitrogen doped graphene by the addition of different alkyl and phenyl functional groups at N atoms in syn and anti-configurations. Density functional theory calculations at the B3LYP/def-SV(P) level were employed to understand the syn versus anti preference on functionalization. The bond lengths, bond angles, relative energies, deformation energies and HOMO-LUMO energy gaps, of the syn and anti-configurations of the functionalized 2N-doped graphenes, have been compared. Functionalization with two groups leads to considerable deformation of 2N-doped graphene, which is confirmed by the change in C–N bond lengths by attachment of the functional groups. The attachment of larger functional groups deforms 2N-doped graphene to a greater extent than smaller functional groups. The HOMO-LUMO energy gap values are the least for the alkyl functionalized products, indicating that these structures are kinetically less stable than the phenyl functionalized products.

Identiferoai:union.ndltd.org:auctr.edu/oai:digitalcommons.auctr.edu:cauetds-1243
Date21 May 2018
CreatorsAlhabradi, Thuraya Faleh
PublisherDigitalCommons@Robert W. Woodruff Library, Atlanta University Center
Source SetsAtlanta University Center
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses & Dissertations Collection for Atlanta University & Clark Atlanta University

Page generated in 0.0017 seconds