Return to search

Cysteine (C)-X-C Receptor 4 undergoes Transportin 1-Dependent Nuclear Localization and remains functional at the Nucleus of Metastatic Prostate Cancer Cells

The G-protein coupled receptor (GPCR) Cysteine (C)-X-C Receptor 4 (CXCR4) plays an important role in prostate cancer metastasis. CXCR4 is regarded as a plasma membrane receptor, that it transmits signals that support transformation, progression and metastasis. Due to the central role of CXCR4 in tumorigenesis, therapeutic approaches such as antagonists and monoclonal antibodies have focused on receptors the located at the plasma membrane. An emerging concept for GPCRs is that they can localize to the nucleus where they may retain function and mediate nuclear signaling. Herein, we demonstrate that CXCR4 is highly expressed in high grade metastatic prostate cancer tissues. Increased expression of CXCR4 is also detected in several prostate cancer cell lines as compared to normal prostate epithelial cells. Our studies identify a nuclear pool of CXCR4 and also define a mechanism for nuclear targeting of CXCR4. A classical nuclear localization sequence (cNLS), "RPRK", in CXCR4 can contribute to nuclear localization. In addition, CXCR4 interacts with the nuclear transport receptor, Transportin βi, to promote nuclear accumulation of CXCR4. Importantly, Gαi immunoprecipitation and calcium mobilization studies indicate that nuclear CXCR4 is functional and can participate in G-protein signaling revealing that the nuclear pool of CXCR4 can retain function. Localization of functional CXCR4 to the nucleus may be a mechanism by which prostate cancer cells evade treatment, thus contributing to increased metastatic ability and poorer prognosis after tumors have been treated with therapy that targets plasma membrane CXCR4. This study addresses the mechanism of nuclear targeting for CXCR4 and demonstrates that CXCR4 can retain function within the nucleus and provides important new information to illuminate what have previously been primarily clinical observations of nuclear CXCR4.

Identiferoai:union.ndltd.org:auctr.edu/oai:digitalcommons.auctr.edu:dissertations-2270
Date01 July 2013
CreatorsDon-Salu-Hewage, Ayesha Shyamali
PublisherDigitalCommons@Robert W. Woodruff Library, Atlanta University Center
Source SetsAtlanta University Center
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceETD Collection for Robert W. Woodruff Library, Atlanta University Center

Page generated in 0.0023 seconds