Return to search

Wind flow structures and wind forces in forests

This thesis describes a series of 1:75 scale wind tunnel experiments investigating the wind flow over, and through, three different forest models and the resultant wind loading on individual model trees. The experiments were designed to lead to a quantitative assessment of the wind stability of the particular forest arrangements and also to permit a study of the coherent gust structures in the flow. Forest canopy flow is dominated by a plane mixing layer flow regime with a shear layer close to the canopy top. It has been confirmed that data can be correlated usefully in terms of a shear length, Ls, related to the form of this shear layer. Frequency analysis has confirmed that the flow structures have the same frequency as the swaying of the tallest trees in each forest. A mechanism is proposed whereby upstream turbulence induces swaying of trees at and near the upwind edge region of the forest, which in turn perturbs the air in the unstable shear layer. This leads to a roll-up of the shear layer and the creation of coherent flow structures. Conditional sampling of the gust structures, using wavelet analysis, has also supported the theory of a plane mixing layer type flow. An eddy-pair structure was revealed, the arrangement of which accounts for the intermittent strong downward sweeps of air into the canopy that have been reported by many observers. The large downward sweep of air was also shown to be responsible for the highest bending moments experienced by individual trees. Assessments of the different forest formations showed that in a forest consisting of a 50/50 mix of 200 mm and 100 mm model trees, gusts did not penetrate the lower forest. This arrangement should improve the protection of younger trees and may be worth investigating in field trials.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:299574
Date January 1998
CreatorsMarshall, Bryan Jonathan
ContributorsWood, Colin
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:16f42b9c-a87c-43f9-bcc3-def409aa61d5

Page generated in 0.0017 seconds