Return to search

Design and performance analysis of fail-signal based consensus protocols for Byzantine faults

Services offered by computing systems continue to play a crucial role in our every day lives. This thesis examines and solves a challenging problem in making these services dependable using means that can be assured not to compromise service responsiveness, particularly when no failure occurs. Causes of undependability are faults and faults of all known origins, including malicious attacks, are collectively referred to as Byzantine faults. Service or state machine replication is the only known technique for tolerating Byzantine faults. It becomes more effective when replicas are spaced out over a wide area network (WAN) such as the Internet - adding tolerance to localised disasters. It requires that replicas process the randomly arriving user requests in an identical order. Achieving this requirement together with deterministic termination guarantees is impossible in a fail-prone environment. This impossibility prevails because of the inability to accurately estimate a bound on inter-replica communication delays over a WAN. Canonical protocols in the literature are designed to delay termination until the WAN preserves convergence between actual delays and the estimate used. They thus risk performance degradation of the replicated service. We eliminate this risk by using Fail-Signal processesto circumvent the impossibility. A fail-signal (FS) process is made up of redundant, Byzantine-prone processes that continually check each other's performance. Consequently, it fails only by crashing and also signals its imminent failure. Using FS process constructs, a family of three order protocols has been developed: Protocol-0, Protocol-I and Protocol-11. Each protocol caters for a particular set of assumptions made in the FS process construction and the subsequent FS process behaviour. Protocol-I is extensively compared with a canonical protocol of Castro and Liskov which is widely acknowledged for its desirable performance. The study comprehensively establishes the cost and benefits of our approach in a variety of both real and emulated network settings, by varying number of replicas, system load and cryptographic techniques. The study shows that Protocol-I has superior performancp when no failures occur.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:443103
Date January 2007
CreatorsTariq, Qurat-ul-Ain Inayat
PublisherUniversity of Newcastle Upon Tyne
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10443/536

Page generated in 0.0018 seconds