Return to search

Computation of unsteady and non-equilibrium turbulent flows using Reynolds stress transport models

In this work the predictive capability of a number of Reynolds stress transport(RST) models was first tested in a range of non-equilibrium homogeneous flows, comparisons being drawn with existing direct numerical simulation (DNS) results and physical measurements. The cases considered include both shear and normally strained flows, in some cases with a constant applied strain rate, and in others where this varied with time. Models were generally found to perform well in homogeneous shear at low shear rates, but their performance increasingly deteriorated at higher shear rates. This was attributed mainly to weaknesses in the pressure-strain rate models, leading to over-prediction of the shear stress component of the stress anisotropy tensor at high shear rates. Performance in irrotational homogeneous strains was generally good, and was more consistent over a much wider range of strain rates. In the experimental plane strain and axisymmetric contraction cases, with time-varying strain rates, there was evidence of an accelerated dissipation rate generation. Significant improvement was achieved through the use of an alternative dissipation rate generation term, Pε , in these cases, suggesting a possible route for future modelling investigation. Subsequently, the models were also tested in the inhomogeneous case of pulsating channel flow over a wide range of frequencies, the reference for these cases being the LES of Scotti and Piomelli (2001). A particularly challenging feature in this problem set was the partial laminarisation and re-transition that occurred cyclically at low and, to a lesser extent, intermediate frequencies. None of the models tested were able to reproduce correctly all of the observed flow features, and none returned consistently superior results in all the cases examined. Finally, models were tested in the case of a plane jet interacting with a rectangular dead-end enclosure. Two geometric configurations are examined, corresponding a steady regime, and an intrinsically unsteady regime in which periodic flow oscillations are experimentally observed (Mataoui et al., 2003). In the steady case generally similar flow patterns were returned by the models tested, with some differences arising in the degree of downward deflection of the impinging jet, which in turn affected the level of turbulence energy developing in the lower part of the cavity. In the unsteady case, only two of the models tested, a two-equation k-ε model and an advanced RST model, correctly returned purely periodic solutions. The other two RST models, based on linear pressure-strain rate terms, returned unsteady flow patterns that exhibited complex oscillations with significant cycle-to-cycle variations. Unfortunately, the limited availability of reliable experimental data did not allow a detailed quantitative examination of model performance.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:517734
Date January 2010
CreatorsAl-Sharif, Sharaf
ContributorsCraft, Timothy ; Cotton, Mark
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/computation-of-unsteady-and-nonequilibrium-turbulent-flows-using-reynolds-stress-transport-models(935dbd20-b049-4b62-9e1c-eebb261675e5).html

Page generated in 0.0022 seconds