Return to search

Dynamic impact testing and computer simulation of wheelchair tiedown and occupant restraint systems (WTORS)

Occupant Restraint Systems (ORS) have been widely used in Public Service Vehicles (PSVs). A Wheelchair Tiedown and Occupant Restraint System (WTORS) has been developed to provide effective occupant protection for disabled people who are seated in wheelchairs. An international laboratory study had been conducted to produce a compliance test protocol that included specification of the sled deceleration versus time history and the crash pulse corridor. Currently effort at the international level is being focused through the International Standards Organisation (ISO) to produce standards for WTORS and transportable wheelchairs. Dynamic sled testing of WTORS was conducted in Middlesex University Road Safety Engineering Laboratory (MURSEL) to develop a test protocol in a WTORS System. This research has been concerned with the effects to which the occupant of a wheelchair secured by a WTORS is subjected in a frontal impact. Both occupant Forward Facing Frontal (FFF) and Rearward Facing Frontal (RFF) impact configurations have been considered. A Surrogate wheelchair with a tiedown restraint System, a Surrogate occupant restraint System, and an Anthropomorphic Test Dummy (ATD) were used to facilitate highly controlled tests. Production wheelchairs were also crash tested to validate the response of the Surrogate System. A 48 km/h-20g crash pulse falling within the ISO standard crash pulse corridor was specified. The Crash Victim Simulation (CVS), one of the computer modelling methods, and Finite Element Analysis (FEA) models were designed to study the dynamic response of a restrained wheelchair and its occupant in a crash environment. Two CVS computer packages: MADYMO®, DYNAMAN® and one of FEA programs: PAFEC were used in WTORS models to predict the occupant response during impacts and hence provide data to optimise future system design. A modelling protocol for WTORS was developed based on the results of ninety (90) sled tests of WTORS Surrogate system and forty (40) dynamic tests of production wheelchairs. To illustrate the potential of these models the results of simulations were validated by sled tests. A random effects Statistical method was used to quantify the results. The load-time histories were also traced to qualify the test and model results. A literature review highlighted twenty years of wheelchair crash research. The correlation between computer model and experimental results was made more accurately. The modelling technique of interconnection of FEA models into CVS program was also introduced. The velocity profile and the natural frequency of WTORS analysis were used to explain why the wheelchair and dummy experienced acceleration amplifications relative to the sled. The shoulder belt load at floor-mounted configuration was found to be higher than that at B pillar configuration. Energy principles were also applied to show why more compliant wheelchair tiedown Systems subjected restraints to a less severe crash environment. A decomposition of forces using the computer model showed why quasi-static analysis is insufficient in WTORS design. It is concluded that the B pillar anchorage of the occupant diagonal strap is superior to the floor-mounted configuration.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:548916
Date January 1999
CreatorsGu, Jun
PublisherMiddlesex University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://eprints.mdx.ac.uk/8107/

Page generated in 0.0069 seconds