Tandem catalytic processes involving Rhodium-catalysed intermolecular hydroacylation

This work describes the extension of rhodium-catalysed intermolecular hydroacylation to encompass some tandem catalytic processes, wherein a further catalytic process is enacted on the product of an intermolecular hydroacylation reaction in “one pot”. Chapter 1 entails an overview of the development of hydroacylation chemistry, with a focus on the different types of catalytic systems which have been used to facilitate this transformation. A brief description of some precedented examples of tandem catalytic processes which include a hydroacylation reaction is also included. Chapter 2 describes the intermolecular hydroacylation of chelating aldehydes and propargylic alkynes to form γ-hydroxy-α,β-enones, and their subsequent acid-catalysed cyclisation to form substituted furans in a "one-pot" procedure. Additionally, a tandem intermolecular hydroacylation/double-bond isomerisation protocol for the synthesis of 1,4-dicarbonyl compounds is detailed, and the subsequent transformation of this class of compounds to heterocycles is included. Chapter 3 focuses on the development of tandem catalytic hydroacylation/reductive processes, wherein a hydroacylation product undergoes a reduction which is catalysed by the hydroacylation catalyst. Chapter 4 describes an attempt to utilise the rhodium-catalysed conjugate addition of arylmetal species to enomes to create a tandem alkyne hydroacylation/conjugate addition process. Chapter 5 encompasses the use of a small range of different solvents in rhodium-catalysed hydroacylation, in an attempt to find higher-boiling alternatives to acetone and a "green" alternative to the commonly used DCE.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:555255
Date January 2011
CreatorsLenden, Philip
ContributorsWillis, M.
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:e63f5fd7-f92f-47dd-b06f-face73729804

Page generated in 0.0022 seconds