Return to search

Compressible vortex rings and their interaction with stationary surfaces

Experimental studies have been conducted on the topic of the interaction of compressiblevortex rings on stationary surfaces. Throughout the campaign experimentswere carried out at pressure ratios of ! 4, 8, and 12. In the classical set up of airas both the driver and driven gas, these corresponded to theoretical incident Machnumbers Ms of 1.34, 1.54, and 1.61.Experiments were conducted on vortex rings impinging on a stationary surfacelocated at three (increasing) distances (1.66, 3.33, and 5.00 inner diameters) fromthe shock tube exit and on a stationary surface at a set distance but at three anglesinclinations (75, 60, and 45deg at 3.33 inner diameters). Results of the impingementof a vortex ring on a stationary solid surface perpendicular to the flow showed asymmetrical impingement process. A boundary layer is generated over the surfacewith an associated increase in pressure. An increase in velocity due to the radialexpansion causes the pressure over the surface to decrease. This expansion leads tothe development of azimuthal wave instabilities along the core. Pressure was seen toincrease with an increase in incident Mach number value. The variation in distanceresulted in an increase in pressure with an increase in distance. This counter-intuitiveresult can be explained by the higher translational velocity at impingement, alongwith the absence of the initial radial expansion of the counter-rotating vortex rings. The variation in surface angle inclination introduced several degrees of asymmetry. One core of the vortex ring impinges first on the surface due to its closerproximity to it, while the other core is still free to propagate. This process generatesan asymmetric boundary layer over the surface, and a higher rate of stretching ofthe lower core, resulting in its dissipation. At higher incident Mach numbers, theembedded rearward facing shock is reflected and propagates perpendicularly to thesurface. At the inclination angles of 60 and 45deg, the counter-rotating vortex ringsare fully deflected upwards and orbit around the main vortex. This phenomenonresult in a significant difference in pressure distribution between the upper and lowersections of the surface.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:558040
Date January 2012
CreatorsMariani, Raffaello
ContributorsKontis, Konstantinos
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/compressible-vortex-rings-and-their-interaction-with-stationary-surfaces(39c2999c-650f-4ef5-820a-4e81f4029149).html

Page generated in 0.0017 seconds