Return to search

The impact of climate change on electricity demand in Thailand

Climate change is expected to lead to changes in ambient temperature, wind speed, humidity, precipitation and cloud cover. As electricity demand is closely influenced by these climatic variables, there is likely to be an impact on demand patterns. The potential impact of future changes in climate on electricity demand can be seen on an hourly, daily and seasonal basis through the fluctuation of weather patterns. However, the magnitude of such changes will depend on prevailing electricity use patterns as well as long-term socio-economic trends. This thesis investigates how changing climate will affect Thailand’s short-term and long-term electricity demand. Its review of available literature across the climate change and power systems fields highlights that analysis of such impacts for developing nations is almost entirely lacking. It then presents a modelling approach to capture the influence of temperature on daily and seasonal demand. The models are initially used to examine the sensitivity of demand to uniform rises in temperature. More sophisticated modelling, based on temperature projections from the UK Hadley Centre climate model combined with socio-economic projections from the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios, is used to project absolute changes in Thailand’s electricity demand across three future time periods. The specific climate and socio-economic scenarios considered here indicate that mean annual temperatures in Thailand will rise by 1.74 to 3.43°C by 2080, implying additional increases in Thai peak electricity demand of 1.5–3.1% in the 2020s, 3.7–8.3% in the 2050s and 6.6–15.3% in the 2080s. The implications of the changes are discussed in terms of Thailand’s approach to meeting future electrical demand.
Date January 2008
CreatorsParkpoom, Suchao Jake
ContributorsHarrison, Gareth. : Bialek, Janusz
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.0022 seconds