Return to search

Vulnerability of ex vivo α-motor nerve terminals to hypoxia-reperfusion injury

A growing body of evidence shows that presynaptic nerve terminals throughout the nervous system are vulnerable to a range of traumatic, toxic and disease-related neurodegenerative stimuli. The aim of this study was to further characterise this vulnerability by examining the response of mouse α-motor nerve terminals at the neuromuscular junction (NMJ) to hypoxia-reperfusion injury. To address this aim, a novel model system was generated in which ex vivo skeletal muscle preparations could be maintained in an hypoxic environment, at an O2 concentration below in vivo normoxic values (<0.25% O2), for 2hr followed by 2hr reperfusion (2H-2R). Using this model system combined with quantitative assessment of immunohistological preparations as well as some ultrastructural observations, I present evidence to show that α-motor nerve terminals are rapidly and selectively vulnerable to hypoxia-reperfusion injury with no apparent perturbations to postsynaptic endplates or muscle fibres. I show that the severity of α-motor nerve terminal pathology is age and muscle type/location dependent: in 8-12wk old mice, nerve terminals in fast-twitch lumbrical muscles are more vulnerable than predominantly slow-twitch transversus abdominis and triangularis sterni. In 5-6 week old mice however, there is an age dependent increase in vulnerability of α-motor nerve terminals from the predominantly slow-twitch muscles while the fast-twitch lumbricals remained unaffected by age. The functional, morphological and ultrastructural pathology observed in α-motor nerve terminals following 2H-2R is indicative of selective and ongoing nerve terminal disassembly but, occurs via a mechanism distinct from Wallerian degeneration, as the neuroprotective slow Wallerian degeneration (Wlds) gene did not protect nerve terminals from these pathological changes. I also provide provisional evidence to show that 1A/II muscle spindle afferents and γ-motor nerve terminals are more resistant to hypoxia-reperfusion injury compared with α-motor nerve terminals. In addition to this, I also report preliminary finding that indicate that the oxygen storing protein, neuroglobin, maybe expressed at the mouse NMJ and report the difficulties of using mice that express yellow fluorescent protein (YFP) in their neurons for repeat/live imaging studies. Overall, these data show that the model of hypoxia-reperfusion injury developed in this study is robust and repeatable, that it induces rapid, quantitative changes in α-motor nerve terminals and that it can be used to further examine the mechanisms regulating nerve terminal vulnerability in response to hypoxia-reperfusion injuries. These findings have clinical implications for the use of surgical tourniquets and in the aetiology of many neurodegenerative diseases and neuropathic sequelae where mechanisms relating to hypoxia and hypoxia-reperfusion injury have been implicated.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:562880
Date January 2010
CreatorsBaxter, Rebecca L.
ContributorsGillingwater, Tom. ; Parson, Simon
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/4413

Page generated in 0.0027 seconds