Return to search

Synthesis and charaterisation of phosphorescent copper (I) complexes for light emitting devices

Over the last decade, many significant developments have been made to improve the active materials in a new generation of organic light emitting devices (OLEDs). Current OLED technology is focused on organo-transition metal complexes, which emit from the triplet excited state and exhibit bright phosphorescence. Efficient in devices have been reported using these luminescent materials, such as iridium and platinum complexes, however, rare metal abundance concerns, high price and toxicology have inspired the study of alternative phosphorescent materials, such as copper or silver complexes. In this research, novel copper complexes have been synthesized, such as trinuclear and mononuclear copper (I) complexes, using a range of ligands, such as alkynyl, phosphine alkynyl and pyridine ligands. The synthesised complexes have been characterised by with a range of techniques, such as UV/Vis absorption and emission spectroscopy, nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), cyclic voltammetry (CV) and scanning electron microscopy (SEM). Most of the copper complexes have shown very interesting luminescent properties in solution and solid state and some of them were studied for future application in a device.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:582915
Date January 2013
CreatorsAndrés-Tomé, María Inmaculada
ContributorsCoppo, P.; Kathirgamanathan, P.
PublisherBrunel University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://bura.brunel.ac.uk/handle/2438/7694

Page generated in 0.0785 seconds