Return to search

Development of miniaturized electro-analytical approach for dopamine and catechol determination in the presence of ascorbic acid

We have investigated electropolymerisation for fabrication of a chemically modified working electrode for the determination of dopamine and catechol neurotransmitters in the presence of ascorbic acid. A variety of film compositions were investigated that would allow discrimination of the neurotransmitters through a combination of electrostatic barrier and the film porosity. The films investigated were based on different compositions of () poly-o-toluidine-co-aniline (POT-co-PA), () poly-o-toluidine-co-o-anisidine (POT-co-POA) and () polyacriflavine (PAF). The POT-co-PA and POT-co-POA gave the most promising result although the POT-co-PA was preferred because of higher current enhancement and better separation of dopamine and catechol neurotransmitters in the presence of ascorbic acid. The uses of electropolymerisation make the investigated films attractive candidates for the fabrication of a chemically modified microelectrode with application in capillary electrophoresis separation with electrochemical detection. The active area of nano particle (Au, Pt and Ag) screen printed electrodes was determined using cyclic voltammogram with ferro/ferricyanide couple. The active surface of the nano particle coated electrode was found surprisingly to be 5% - 65% lower than that geometrically calculated surface area for the electrode. This is ascribed to the limitation of the screen printing approach that was used. A low cost high replication approach that would allow development of a capillary electrophoresis microfluidic chip with electrochemical detection (CE-ECD) on a polymer substrate was investigated. A fluidic top layer was fabricated using hot embossing and an electrode bottom layer by metal patterning on a polymer substrate using metallisation and photolithography.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:589103
Date January 2013
CreatorsRashid, Mamun-Ur
ContributorsAli, Zulf
PublisherTeesside University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10149/312859

Page generated in 0.0024 seconds