Return to search

The nesting ecology of bumblebees

Bumblebees have undergone dramatic declines both in Britain and further afield during the last century. Bumblebees provide a crucial pollination service to both crops and wild flowers. For these reasons, they have received a great deal of research attention over the years. However, the ecology of wild bumblebee nests and the interactions between nests and other species, particularly vertebrates has been somewhat understudied. This is largely due to the difficulty in finding sufficient nests for well replicated study and a lack of appropriate methods of observation. Here, methods for locating bumblebee nests were trialled. It was found that a specially trained bumblebee nest detection dog did not discover nests any faster than people who had received minimal instruction. Numbers of nest site searching queens provide a reliable indication of suitable nesting habitat (i.e. places where nests are more likely to be found). In order to investigate aspects of bumblebee nesting ecology wild nests were observed by filming or regular observations by either researchers or members of the public. Some buff-tailed bumblebee (Bombus terrestris) nests were collected and all the bumblebees were genotyped to identify any foreign individuals. A review of British mammalian dietary literature was conducted to identify those that predate bumblebees. Great tits (Parus major) were filmed predating bumblebees at nests and it was clear from the literature and observations that badger (Meles meles), pine martens (Martes martes) and hedgehogs (Erinaceus europaeus) predate bumblebee nests, as well as the wax moth (Aphomia sociella). No evidence for predation by any other vertebrate species was found. Behaviours recorded included parasitism by Psithyrus, apparent nectar theft and possible usurpation by true bumblebees, egg-dumping by foreign queens and drifting and drifter reproduction by foreign workers. These events may cause harm to colonies (for example, through horizontal transmission of pathogens, or exploitation of the host nest’s resources). Alternatively where for example, usurpation by true bumblebees, egg-dumping or drifting is successful, these alternative reproductive strategies may increase the effective population size by enabling a single nest to produce reproductives of more than one breeding female. These data found that wild buff-tailed bumblebees (B. terrestris) nests with a greater proportion of workers infected with Crithidia bombi were less likely to produce gynes than those with fewer infected workers. Gyne production also varied dramatically between years. There is a growing body of evidence that a class of frequently used insecticides called neonicotinoids are negatively impacting bumblebees. An experiment was conducted using commercial colonies of buff-tailed bumblebees (B. terrestris) which were fed pollen and nectar which had been treated with the neonicotinoid imidacloprid at field realistic, sub-lethal levels. Treated colonies, produced 85-90% fewer gynes than control colonies. If this trend is representative of natural nests feeding on treated crops, for example, oilseed rape and field beans or garden flowers, then this would be expected to cause dramatic population declines. In this thesis methods for locating bumblebee nests have been tested, new behaviours have been identified (for example, egg-dumping by queens and predation by great tits) and estimations for rates of fecundity and destruction by various factors have been provided. Doubt has been cast over the status of some mammals as predators of bumblebee nests and estimates for gyne production, nest longevity, etc, have been given. More work is needed, especially observations of incipient nests as this is when the greatest losses are thought to occur.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:605844
Date January 2013
CreatorsO'Connor, Stephanie A.
ContributorsGoulson, Dave; Park, Kirsty
PublisherUniversity of Stirling
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1893/20348

Page generated in 0.0024 seconds