Return to search

Investigation of the effects of different cryopreservation parameters on the genome of 51/4 hpf zebrafish (Danio rerio) embryos

In recent years, numerous studies have linked cryopreservation with increased occurrence of mutations, DNA fragmentation and the event of apoptosis in biological objects. However, the evidence emerged from such studies is somewhat inconclusive. The current study, therefore, aimed to analyse the DNA damage response (DDR) from the cryopreserved cells in order to characterise the nature of the putative DNA damage. The study set out to investigate the effects of different cryopreservation parameters on the genome in terms of double strand breaks (DSBs), single strand breaks (SSBs), and various forms of sequence alteration using 5¼ hour post fertilisation (hpf) zebrafish (Danio rerio) embryos. The experimental conditions under which the investigation was carried out were short term chilling at 0˚C, treatment with two cryoprotective agents (CPA), namely, MeOH and Me2SO, and cooling to -35˚C. Assays for detecting DSB-activated DDR proteins and SSB-activated DDR proteins in 5¼ hpf zebrafish (Danio rerio) were developed and then utilised to investigate the occurrence of DSBs and SSBs in the genome of the embryos treated with the experimental conditions. The study then analysed the expression profiles of a set of genes unique to the base excision repair (BER), nucleotide excision repair (NER) and mismatch repair (MMR) pathways as indicators of the occurrence of various forms of sequence alterations in the genome of the embryos treated with the experimental conditions. It was found that chilling and CPA treatment did not induce DSBs or SSBs but up-regulated the MMR and BER, respectively. CPA treatment also down-regulated the NER and the MMR mechanisms. Cooling, on the contrary, did not induce DSBs but induced SSBs in the genome, which were repaired when the embryos were provided with a recovery time. Cooling also up-regulated the NER and the BER mechanisms in the embryos. The overall finding of the study indicated that the experimental conditions increased the occurrence of various single stranded DNA lesions in the genome of the embryos. The present study provided important insights into how eukaryotic cells respond to different cryopreservation parameters, which will significantly enhance the current knowledge of the effects of cryopreservation on the genome of biological objects.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:606676
Date January 2013
CreatorsAhmed, Raju
PublisherUniversity of Bedfordshire
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10547/322165

Page generated in 0.0015 seconds