Spatial modulation : theory to practice

Spatial modulation (SM) is a transmission technique proposed for multiple–input multiple– output (MIMO) systems, where only one transmit antenna is active at a time, offering an increase in the spectral efficiency equal to the base–two logarithm of the number of transmit antennas. The activation of only one antenna at each time instance enhances the average bit error ratio (ABER) as inter–channel interference (ICI) is avoided, and reduces hardware complexity, algorithmic complexity and power consumption. Thus, SM is an ideal candidate for large scale MIMO (tens and hundreds of antennas). The analytical ABER performance of SM is studied and different frameworks are proposed in other works. However, these frameworks have various limitations. Therefore, a closed–form analytical bound for the ABER performance of SM over correlated and uncorrelated, Rayleigh, Rician and Nakagami–m channels is proposed in this work. Furthermore, in spite of the low–complexity implementation of SM, there is still potential for further reductions, by limiting the number of possible combinations by exploiting the sphere decoder (SD) principle. However, existing SD algorithms do not consider the basic and fundamental principle of SM, that at any given time, only one antenna is active. Therefore, two modified SD algorithms tailored to SM are proposed. It is shown that the proposed sphere decoder algorithms offer an optimal performance, with a significant reduction of the computational complexity. Finally, the logarithmic increase in spectral efficiency offered by SM and the requirement that the number of antennas must be a power of two would require a large number of antennas. To overcome this limitation, two new MIMO modulation systems generalised spatial modulation (GNSM) and variable generalised spatial modulation (VGSM) are proposed, where the same symbol is transmitted simultaneously from more than one transmit antenna at a time. Transmitting the same data symbol from more than one antenna reduces the number of transmit antennas needed and retains the key advantages of SM. In initial development simple channel models can be used, however, as the system develops it should be tested on more realistic channels, which include the interactions between the environment and antennas. Therefore, a full analysis of the ABER performance of SM over urban channel measurements is carried out. The results using the urban measured channels confirm the theoretical work done in the field of SM. Finally, for the first time, the performance of SM is tested in a practical testbed, whereby the SM principle is validated.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:615473
Date January 2014
CreatorsYounis, Abdelhamid
ContributorsHaas, Harald; Thompson, John
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/8990

Page generated in 0.0028 seconds