Return to search

The use of ultrasound on the extraction of microalgal lipids

Microalgae synthesize and store large volumes of lipids (potentially over 25% of dry weight) which could provide a renewable source of biodiesel. Traditional extraction techniques often produce poor lipid yields particularly from microalgae with robust cell walls. This project investigated the role of power ultrasound as a cell disruption step in lipid extraction from four microalgal species. Nile Red staining was used to assess the time when ultrasound induced increased membrane permeability in each species and lipids were extracted using an ultrasound assisted Bligh and Dyer extraction method. A 20 kHz probe system (40% amplitude, 0.086 W/cm3) caused increased lipid recovery from dry biomass in all cases; D. salina (no cell wall) from 15 to 22.5% of dry biomass after 1 minute (26% when stressed with 35 g/L NaCl). C. concordia (thin cell wall) from 7.5 to 10.5% of dry biomass after 2 minutes (27% with 25% nitrogen reduction in growth media). N. oculata (thick cell wall) from 6.5 to 10% of dry biomass after 16 minutes (31.5% when stressed with 30 g/L NaCl). The stressed cultures yield could be improved to 35% when ultrasound was combined with S070 beating beads. Chlorella sp. (thick cell wall) from 6.3 to 8.7% of dry biomass, after 16 minutes (44% was achieved when harvested at day 9 instead of 15). A Dual Frequency Reactor (16 and 20 kHz, 0.01 W/cm3) flow system with S070 beads demonstrated that high lipid extraction yields could be achieved on a larger level with N. oculata. After 4:48 minutes sonication 24% lipid recovery was achieved. This system could theoretically increase daily microalgal oil production from 3.96 to 5.76 L per day when compared to conventional techniques, at an extra production cost of only 2.9 p/litre (1.5% increase). D. salina, N. oculata and C. concordia resumed normal growth following sonication at 20 kHz after 1-20 days (8 minutes treatment for D. salina, 60 minutes treatment for N. oculata and 16 minutes treatment for C. concordia). It was found that the supernatant of sonicated D. salina and C. concordia when added to established cultures were able to boost their growth.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:629996
Date January 2014
CreatorsKing, P. M.
PublisherCoventry University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://curve.coventry.ac.uk/open/items/4aabbd22-686a-4284-a18d-23de6bcff203/1

Page generated in 0.0023 seconds