Return to search

Hemispheric effects in binocular visual word recognition : experiments and cognitive modelling

Functionally, a vertically split fovea should confer an advantage to the processor. Visual stumuli arriving to each eye would be vertically split and the two parts sent to different hemispheres, obeying the crossed nature of the visual pathways. I test the prediction of a functional advantage for the separate lateralisation of text processing from the two eyes. I explore this hypothesis by means of psycholinguistic experimentation and cognitive modelling. I employed a haploscope to show foveated text to the two eyes separately, controlling for location and presentation duration, and guaranteeing that each eye could not see the other eye's stimuli. I carried out a series of experiments, based on this novel paradigm, to explore the effects of a vertically split fovea on correctness of word perception. The experiments showed: (i) words presented exclusively to the contralateral hemifoveas are more correctly reported than words presented exclusively to the ipsilateral hemifoveas; (ii) the same full word shown to both eyes and available for fusion led to better perception; (iii) word endings with fewer type-count neighbours were more accurately reported, as were beginnings with larger type-count neighbours; (iv) uncrossed-eye stumuli were better perceived than crossed-eye stimuli; (v) principled roles in a model of isolated word recognition for lexical and sublexical neighbourhood statistics, syllabicity, hemispheric fine- and coarse-coding differences, sex of the reader, handedness, left and right eye, and visual pathways. Finally, I propose a connectionist model of visual word recognition that incorporates these findings and is a basis for further exploration.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:630284
Date January 2013
CreatorsObregón, Mateo
ContributorsShillcock, Richard; Branigan, Holly; Monaghan, Padraic
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/9732

Page generated in 0.3552 seconds