Return to search

Modelling and simulation of two-phase closed thermosyphones using two-fluid method

Computational Fluid Dynamics (CFD) has become one of the main instruments for the prediction of many commercial and research oriented fluid flow and heat transfer problems. While single phase flow analysis through CFD has gained grounds within the commercial industry, multiphase flow analysis is still the subject of further research and development. Heat Pipes and thermosyphones are no exception to this. However, the involvement of more than one fluid phase within these devices has made their analysis through CFD more challenging and computationally more demanding to perform. In this thesis, computational fluid dynamics is used as a modelling tool in order to predict the thermal hydraulic behaviour of multiphase environment within thermosyphones and heat pipes. Eulerian two-fluid method is used to solve the conservation equations for mass, momentum and energy, for each phase along with the inclusion of interfacial heat and mass transfer terms. Numerical predictions are obtained for the steady-state and transient operation of stationary thermosyphon, while rotating heat pipes operation is also simulated using axially and radially rotating heat pipe models. Apart from using the commercially available CFD code for the analysis of thermosyphones related simulation, numerical work is performed regarding the coupling of momentum equations based on Eulerian two-fluid modelling scheme. OPENFOAM open source code is used and modified to include the Partial Elimination Algorithm (PEA) for the coupling of interfacial exchange terms, including interfacial mass transfer term, in the momentum equations of both phases. Results obtained from above discussed studies provide good agreement with corresponding experimental and analytical observations.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:632225
Date January 2014
CreatorsKafeel, Khurram
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://www.manchester.ac.uk/escholar/uk-ac-man-scw:239221

Page generated in 0.0019 seconds