Return to search

A precision measurement of ν_μ disappearance in the T2K experiment

T2K is a long-baseline accelerator neutrino oscillation experiment using the high-intensity ν_μ beam produced at J-PARC. Sitting 295 km away, the giant Super-Kamiokande detector, a 50 kt water tank instrumented with 11,129 photosensitive detectors, sees a narrow band beam peaked at 600 MeV. The baseline to energy ratio is finely tuned for studying neutrino oscillations at the atmospheric neutrino squared-mass splitting. The beam is also sampled 280m downstream of the neutrino production target by a series of finely segmented solid scintillator and time projection chamber detectors. Observing changes in the neutrino beam between the two detectors allows oscillation parameters to be accurately extracted. A ν_μ-disappearance analysis was performed on the combined T2K Run 1+2+3+4 dataset, corresponding to integrated J-PARC neutrino beam exposure of 6.57x10<sup>20</sup> POT, in a framework of three active neutrino flavour oscillations including matter effects in constant-density matter. The observed reconstructed energy spectrum of 1 μ-like ring events was fitted, and separate fits were made for the normal and the inverted mass hierarchies.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:647646
Date January 2014
CreatorsDealtry, Thomas J.
ContributorsAndreopoulos, Constantinos; Weber, Alfons
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:068b393a-7736-43d8-b4f4-60f2ced57349

Page generated in 0.0027 seconds