Return to search

Energy transport in open quantum systems

This thesis is concerned with modelling the dynamics of open quantum systems in several different contexts. Of principal interest is the manner in which the environment can modify, or even dominate, a system’s quantum behaviour in order to facilitate the transport of energetic excitations. In the first research chapter, a time-local, non-Markovian quantum master equation is derived in a variationally defined reference frame, for networks of two-level systems coupled to bosonic environments. The predictions of this master equation are then compared with those derived using both weak-coupling and polaron approximations. The variational master equation is found to agree with these standard approaches in their regimes of validity, whilst interpolating between them in intermediate parameter regimes. The second research chapter focusses on the dynamics of a superconducting double quantum dot embedded in a resonant circuit. The device is considered in a regime where the ground state consists of a coherent spatial superposition of a single Cooper pair, which can be excited by a variety of interactions with the environment. The relevant transition rates are calculated and the processes responsible are identified. A numerical simulation of the system is then used to explain experimental data, and show that for certain parameters a significant fraction of excitations occur via absorption of photons from the environment. The final chapter considers a model for an olfactory receptor, in which odorant molecules are recognised by their vibrational modes. Electron transfer occurs in the receptor, dependent on the presence of a vibrational mode of the right frequency. A quantum master equation for the system is derived, and the resulting dynamics is compared to earlier semi-classical treatments. The behaviour of the receptor is found to be sensitive not only to the frequency of the vibrational mode, but also to the character of the surrounding environment. Increased dissipation on the odorant mode, as well as the presence of higher frequencies in the environment is found to improve the frequency resolution of the receptor.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:647660
Date January 2014
CreatorsPollock, Felix Alexander
ContributorsVedral, Vlatko
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:41f104b5-718d-4f1c-a224-fe47c324dbbe

Page generated in 0.002 seconds