Return to search

Transmission use of system charges for a system with renewable energy

Transmission charges are levied against generators and suppliers for their use of transmission networks. The majority of existing transmission charging methods were designed for a system dominated by conventional and controllable generation. The resultant transmission charges reflect network users’ contribution to the system peak. The integration of renewable generation brings fundamental challenges in transmission planning and charging. Main criteria of transmission planning have changed from meeting system peak demand to the trade-offs between operational and investment costs. Transmission charging is required to effectively reflect these trade-offs. This research work aims to develop novel transmission charging methods for low carbon power systems, reflecting the contribution to transmission investments from different generation technologies, different locations, and critically different times. It firstly identifies the key drivers and key conditions of transmission investments under the economic criteria. In the second step, the key drivers and conditions are reflected in the developing of T-LRIC method, ToU-LRIC method and ToU-ICRP method. Major innovations of the proposed methods include 1. reflecting the trade-offs between operational and investments costs by employing investment time horizons to reflect the impacts of system operation on transmission investments (T-LRIC method and ToU-LRIC method). 2. differentiating various generation technologies by firstly quantifying their impacts on the time horizons of network investments, then translating these impacts to transmission charges (T-LRIC method and ToU-LRIC method). 3. providing time-specific transmission charges, in which Time-of-Use periods are identified by clustering time-series congestion costs or transmission charges, thus reflecting the typical conditions of system congestions and the required transmission investments (ToU-LRIC method and ToU-ICRP method). The main benefits from introducing these innovations are i) to guide the short-run behaviours of network users, thus mitigating transmission congestions and promoting efficient utilization of existing networks; ii) to incentivize appropriate generation expansion, thus reducing or deferring costly future transmission investments.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:655726
Date January 2015
CreatorsLi, Jiangtao
ContributorsLi, Furong ; Soleimani, Manuchehr
PublisherUniversity of Bath
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.0021 seconds