Return to search

Systems approaches to enhance performance and applicability of microbial fuel cells

Wastewater treatment is an energy intensive process and sustainable processes/technologies for the treatment of wastewaters need to be considered. One such contender might be the microbial fuel cell (MFC), a subset of bioelectrochemical system (BES) which generates electricity in the process of electrogenic (generating electrons) degradation of soluble organic contaminants present in the water (or wastewater) by electrogens (electron producing bacteria) at the anode in absence of oxygen. Several issues related to the power performance (also somewhat linked to the cost) of MFCs exist causing barriers in the deployment of up-scaled MFC system and the continual research from a multitude of discipline is focusing on overcoming these issues. Implementation of an MFC system for wastewater treatment would require a large array of MFCs to meet the treatment capacity of the wastewater treatment plant. Commissioning and continual operation of such MFCs would require rapid and cost-effective start-up and improvement in their performance. Optimisation of the power performance is addressed through a systems approach in this study, where improvement in the performance is sought through the system design and control strategies applied to the MFCs. The start-up rate of MFCs has been reduced by 45% using maximum power point tracking (MPPT), which is believed to be cost-effective as exogenous energy (such as in the case of poised-potential) is not required for the rapid start-up. The control of MFC power would need to be considered when up-scaled MFC system is realised. The controller implementation benefits from linearised system models. The viability of such piecewise linearisation of the nonlinear MFC system was demonstrated and the data were shown to be reasonably represented by the 1st order process models throughout its operating range. The occurrence of voltage reversal during stack operation of MFCs is a concern in large arrays particularly, and has been shown to be avoidable by adopting the hybrid stack connectivity. Further enhancement of the performance was sought through the detailed design and fluid dynamics modeling to obtain highly mixed anolyte at low input power, using improved helical anodes which increased the MFC performance at all the tested flow rates (1, 3 and 8 mL min-1) compared to previously studied helical anodes. The up-scaling of MFCs by modularisation was demonstrated and it was shown that the use of improved helical anodes can increase the modular length of the MFC without compromising the power performance. Aggregated power produced from the multi-module MFC (containing 5 modules) was 28.05 ± 3.5 mW (19.75 ± 2.47 W m-3) with an PhD Thesis – Hitesh Chandubhai Boghani 2014 V individual MFC power of 5.61 ± 0.7 mW, when fed with 10 mM sodium acetate at 3 mL min-1 flow rate and at 22 ± 3 °C. So, this thesis presents the strategies for improvement in the performance of MFCs for their applications in wastewater treatment and such strategies may also be transferable to their other applications.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:657612
Date January 2014
CreatorsBoghani, Hitesh Chandubhai
ContributorsDinsdale, Richard ; Guwy, Alan
PublisherUniversity of South Wales
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://pure.southwales.ac.uk/en/studentthesis/systems-approaches-to-enhance-performance-and-applicability-of-microbial-fuel-cells(80a19e1c-fd40-42de-90cd-8b6ebcbb73d7).html

Page generated in 0.0238 seconds