Return to search

Development of tissue-engineered biomaterial membranes for the culture and transplantation of retinal cells

Age-related macular degeneration (AMD), which results in the breakdown of the retinal layers and the progressive loss of the retinal pigment epithelium (RPEL is the leading cause of bilateral blindness in elderly individuals worldwide. To date, the success of treatments using retinal cell suspensions injected directly into the subretinal space has been limited due to the aged or damaged Bruch's membrane. Therefore, a biomaterial membrane designed to replicate key aspects of Bruch's membrane that can both support the in -vitro culture and in-vivo delivery of RPE cells could provide a promising alternative treatment for AMD. In this work, electrospinning was used to create poly (L-Iactide-co-E-caprolactone) (PLCL) co-polymer biomaterial membranes which were modified using an atmospheric pressure plasma. This created fibre surfaces with chemical and physical characteristics that mimic the native Bruch's membrane, as determined by SEM, contact angle, AFM, FTIR, XPS and tensile strength analysis. Additionally, atmospheric pressure plasma treatment was also investigated as a way to augment the conformation of a collagen IV layer adsorbed from solution onto the PLCL electrospun membranes. In order to determine the biological performance of the various PLCL electrospun membranes to promote and support the development of a functional monolayer of relevant cells, both adult retinal pigment epithelium (ARPE-19) cells and human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells were assessed utilising a comprehensive range of biological techniques including SEM, gene expression analysis and immunocytochemistry. The work reported here establishes for the first time that surface treated electrospun PLCL membranes are not only capable of enhancing the cellular response and monolayer formation of ARPE-19 cells, they also provide a carrier system that enhances the attachment, proliferation and importantly, the maturation of clinically relevant hESC-RPE cells in serum-free culture conditions.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:674967
Date January 2014
CreatorsPorter, Patrick
PublisherUlster University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.0021 seconds