Return to search

User modelling for robotic companions using stochastic context-free grammars

Creating models about others is a sophisticated human ability that robotic companions need to develop in order to have successful interactions. This thesis proposes user modelling frameworks to personalise the interaction between a robot and its user and devises novel scenarios where robotic companions may apply these user modelling techniques. We tackle the creation of user models in a hierarchical manner, using a streamlined version of the Hierarchical Attentive Multiple-Models for Execution and Recognition (HAMMER) architecture to detect low-level user actions and taking advantage of Stochastic Context-Free Grammars (SCFGs) to instantiate higher-level models which recognise uncertain and recursive sequences of low-level actions. We discuss a couple of distinct scenarios for robotic companions: a humanoid sidekick for power-wheelchair users and a companion of hospital patients. Next, we address the limitations of the previous scenarios by applying our user modelling techniques and designing two further scenarios that fully take advantage of the user model. These scenarios are: a wheelchair driving tutor which models the user abilities, and the musical collaborator which learns the preferences of its users. The methodology produced interesting results in all scenarios: users preferred the actual robot over a simulator as a wheelchair sidekick. Hospital patients rated positively their interactions with the companion independently of their age. Moreover, most users agreed that the music collaborator had become a better accompanist with our framework. Finally, we observed that users' driving performance improved when the robotic tutor instructed them to repeat a task. As our workforce ages and the care requirements in our society grow, robots will need to play a role in helping us lead better lives. This thesis shows that, through the use of SCFGs, adaptive user models may be generated which then can be used by robots to assist their users.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:679698
Date January 2015
CreatorsSarabia Del Castillo, Miguel
ContributorsDemiris, Yiannis
PublisherImperial College London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10044/1/29421

Page generated in 0.0103 seconds