Return to search

Generation of longitudinally polarised terahertz radiation for the energy manipulation of relativistic electron beams

The acceleration of charged particles with ultrafast terahertz electromagnetic radiation could enable new, and improve many of aspects of, accelerator applications. These include providing shorter electron bunches for ultrafast time-resolved pump-probe spectroscopy, enabling complex longitudinal profiles to be imparted onto charged particle bunches and significantly improving the ability to synchronise an accelerator to an external laser. In this thesis I present investigations into terahertz radiation sources that enabled the generation of terahertz radiation with attractive properties for accelerator based applications. Specific attention has been paid to temporally tunable sources that generate strong longitudinally polarised electric field components as these enable a free-space co-linear interaction geometry to be implemented. A simulation describing the propagation of radiation from such sources has been developed. Terahertz sources have been designed and the radiation generated characterised via electro optic detection. These include a radially biased photoconductive antenna (PCA) based source of which the longitudinally polarised terahertz electric field component was found to have an amplitude of 2.22 kVcm-1 as well as a near-single cycle temporal profile. This radially biased PCA was used in conjunction with the Accelerators and Lasers in Combined Experiments (ALICE) energy recovery linear accelerator at the Daresbury Laboratory in an electron acceleration experiment. To enable higher longitudinally polarised terahertz electric field strengths to be obtained, as well as the ability to temporally tune the terahertz radiation, generation within non-linear optical crystals was investigated. Magnesium-oxide doped stoichiometric lithium niobate (MgO:SLN) was investigated as a possible candidate due to its high non-linear susceptibility tensor and reported ability to impose temporal tuning directly from the pump laser beam. A scheme consisting of two MgO:SLN crystals each generating a separate linear polarised terahertz pulse which were then combined via a lens was designed and built. Electro optic detection techniques were used to characterise the radiation generated from this source. Peak terahertz electric fields amplitudes of 11.6 kVcm-1 and 47 kVcm-1 were measured for both the longitudinally and transversely polarised field components respectively. Temporal profiles measured from both the longitudinally and transversely polarised electric field components showed electric field periods of approximately 300 fs. This method of generating terahertz radiation employed a pulse-front tilt technique. Allowing for the same scaling as recently reported in the literature for MgO:SLN generation techniques, which will in principle allow this method to scale to longitudinally polarised terahertz electric field profiles in excess of 1 MVcm-1.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:679991
Date January 2016
CreatorsCliffe, Matthew
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/generation-of-longitudinally-polarised-terahertz-radiation-for-the-energy-manipulation-of-relativistic-electron-beams(5ea447a5-bd46-4d87-8a62-5c7c01f5b8e4).html

Page generated in 0.0152 seconds