The primary aim of this project is to investigate potential new materials for application in ion exchange processes to remove \(^9\)\(^0\)Sr from nuclear waste streams. This work can be broadly split in to two sections, work on attempts to synthesise new materials and work to investigate ion exchange properties of two recently prepared materials AV-7, a synthetic analogue of tin-kostylvite and AV-3, a synthetic analogue of petarasite. Synthesis on new materials was focused on metal silicate materials, in particular titanium, zirconium and tin silicates containing exchangeable group I and II cations. These synthesis attempts initially were focus on targeted mineral phases such as noonkanbahite, BaKNaTi\(_2\)(Si\(_4\)O\(_1\)\(_2\))O\(_2\), followed by a series of brief surveys examining the effects of various changes to precursor gels such as concentration of bases such as NaOH, metal to silicon ratios and the presence of mineralizing agents such as sodium fluoride. The synthesis of two synthetic mineral phases potentially interesting for ion exchange is also reported here, titanite and fresnoite. Ion exchange studies focused mainly on AV-7 and AV-3 but also included well known ion exchange materials for comparison such as clinoptilolite and Nb-doped crystalline silicotitanate and brief investigations in to the ion exchange of fresnoite and titanite. Ion exchange was followed using X-Ray fluorescence, ion chromatography and radioactive \(^8\)\(^5\)Sr exchanges measured using scintillation counters.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:687471 |
Date | January 2016 |
Creators | Savva, Savvaki N. |
Publisher | University of Birmingham |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://etheses.bham.ac.uk//id/eprint/6690/ |
Page generated in 0.002 seconds